
where  ωc  =  
π
a

  
1

µε
 is the cutoff frequency of the mode.

Suppose now that the series and shunt inductance elements
are coupled by means of a distributed gyrator.  This can be
done by writing an “incremental inductance matrix” dL as
follows:

(3)

This quantity dL is an equivalent-circuit representation
for the gyromagnetically coupled inductance values in an
increment dz of the line length.  The gyromagnetic coupling
factor ζ can vary in magnitude between zero and κ/µ for a
ferrite medium.  The basis for writing such a matrix relation-
ship has been discussed previously (2).

Referring to the gyrator-coupled equivalent circuit of
Figure 2, it is possible to write the following equations
relating line voltage and current:
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In this paper, the lossless TE mode waveguide equiva-
lent-circuit model is extended to permit a description of non-
reciprocal phase shift effects by incorporation of distributed
gyrators into the elemental line length prototype.  The
gyrators provide antireciprocal coupling between the series
and shunt inductive elements of the transmission line model.
Simple perturbational formulas are presented and used for
computing some elementary geometries.

I. INTRODUCTION

Equivalent-circuit transmission line representations pro-
vide a simple means of describing the essential behavior of
the propagation factor and characteristic impedance of a
lossless guiding structure without demanding a detailed
knowledge of the electromagnetic field distribution [1].
Some years ago, the distributed gyrator was incorporated
into a coupled-transmission line ensemble and used to de-
scribe nonreciprocal Faraday rotation effects [2].  A varia-
tion of this model was subsequently used to verify that the
reciprocal phase shift mechanism of the Reggia-Spencer
type ferrite phase shifter was one of suppressed Faraday
rotation, and to study the characteristics of such structures
[3, 4].

The equivalent-circuit model developed here extends
previous work by representing a single-mode, lossless,
nonreciprocal transmission line.  The feature that permits
this behavior is the introduction of a distributed gyrator into
the elemental line length prototype such that series and shunt
inductive members are coupled nonreciprocally.  If the
“series inductance” and “shunt inductance” quantities are
respectively associated with the transverse and longitudinal
magnetic fields, it is clear that this model has coupling
properties analogous to the nonreciprocal waveguide.

II. ELEMENTAL PROTOTYPE OF LINE LENGTH

Consider a uniformly filled ordinary rectangular
waveguide and its dominant TE mode equivalent transmis-
sion line representation as defined in Figure 1.  The charac-
teristic impedance will be

     Zo  =  Z / Y  =  
jωµ

γ
 

b

a
 (1)

with the propagation factor γ given by

    γ  =  ZY   =   jωc  µε    
ω
ωc
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 −  1 (2)
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of the roots for γ vanishes, but this point no longer represents
the boundary between propagating and nonpropagating fre-
quency regions.  Cutoff begins for

(9)

and in the region ω' < ω < ωc, the roots for γ both have the
same sign; i.e., two traveling waves can propagate in the
same direction at different phase velocities.  The phase
velocities of these two waves become equal and finite at
cutoff.  Below cutoff, the propagation factor becomes com-
plex, indicating that the solutions have the characteristic of
attenuated waves.

Consider the region                  and define jβ = γ .  Then
the group velocity of the traveling waves can be found by
forming the derivative of ω with respect to ß, and from
equation (7) will be

Vg =  
dω
dβ

= 1

dβ / dω
= ±

ω 2 − ωc
' 2

ko
(10)

It is evident that the two traveling wave solutions have equal
and opposite group velocity regardless of the magnitude or
sign of their respective phase velocities.  The specific depen-
dence of the ω−β characteristic is plotted as a family of
curves in Figure 3.  The characteristic impedance values are
the V/I ratios associated with each of the roots of γ, and are
essentially the eigenvector ratios of the matrix on the right-
hand side of equation (6).

(11)

IV. COUPLING FACTOR COMPUTATION

The transmission line model described above character-
izes the ferrite gyromagnetic effects by means of a single
coupling factor, ζ.  In this section, a perturbational formula is
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(4)

and

         dI  =  jωC dz V +  dI2 (5)

The second line of equation (4) can be solved for dI2 in terms
of V and I, and the result substituted into the top line of
equation (4) and into equation (5).  After some manipulation,
a version of the telegrapher’s equations is obtained:
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(6)

III. PROPAGATION FACTOR AND CHARACTERISTIC IMPEDANCE

Assuming solutions for V and I that vary as eγz, equa-
tions (6) take the standard form of a characteristic-value
problem, with solution for propagation factor as follows:

γ  =  −  j kc  ζ  ±  ω  L1C    1 −  
ωc
ω
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(7)

Defining the initial (ζ=0), infinite-medium propagation fac-

tor as βo  =  ω L1C , equation (7) can be written in the

form

γ  =  jβo  ζ  
ωc
ω
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For the ζ=0, this expression obviously reduces to the
form of equation (2) and describes the behavior of an ordi-
nary waveguide.  When ζ is nonzero, however, in the fre-
quency region where ω>ωc, the roots for γ split into positive
and negative values that are unequal, corresponding to a
guide that propagates a traveling wave in each direction, but
at distinctly different phase velocities.  At ω = ωc, only one

Fig. 3  Specific dependence of ω−β characteristics
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Here the prime denotes differentiation with respect to x.
Since ey(x) must vanish at x=o and x=a, integration by parts
shows that the diagonal elements of Equation (19) are iden-
tically equal in conformity with Equation (6).

Assuming eγz solutions for V(z) and I(z), Equation (19)
becomes a characteristic-value problem analogous to Equa-
tion (6), with roots for γ given by:

(20)

As a pertubational formula, the differential propagation
factor will be given by

                                                                                     (21)

For small deviations from the uniformly filled case, trans-
verse resonance may be applied to conclude the following
relationship:
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Comparison with Equation (12) then permits the following
identifications to be made:
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Since kc is well defined for this case, the coupling factor is
given by
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derived for computation of ζ for a very simple field distribu-
tion, using an approach similar to that presented by Hord, et
al [4].

First, assume that the field distribution in the waveguide
is principally TE, and represent the field components Ey, Hx
and Hz as follows:

bΕy = V(z) ey (x); aHx = I(z) hx (x); bHz = Is (z) hz (x)
(12)

Here ey (x), hx (x), and hz (x) are transverse-plane
distribution functions, and V (z) and I (z) are complex
functions that vary in the direction of propagation and are
associated in a general way with the “transmission line”
voltage and current, while Is (z) is a complex function that
can be associated with the “shunt inductive current”.  Using
the permeability tensor for a transversely magnetized ferrite,
it follows that

(13)

where κ and µ are, in general, functions of position.

Now, write the time-harmonic Maxwell curl equations,
substitute for B using equation (13), and write E and H in
terms of V(z)ey(x), etc., using equation (12).  The resulting
system of equations is obtained:

1

b

dV z( )
dz

ey x( ) = jω  −µI(z)hx(x) + jkIs(z)hz(x)[ ] (14)

1

a

dI z( )
dz

ey x( ) = jωεV z( )ey x( ) + Is z( ) dhz x( )
dx

(15)

1

b
V z( )

dey x( )
dx

= jω jκI z( )hx x( ) + µIs z( )hz x( )[ ] (16)

Equation (16) and its derivative with respect to x may be used
to eliminate Is(z)dhz(x)/dx in Equations (14) and (15), re-
spectively.  In taking the derivative, it should be noted that κ
and µ may be functions of the transverse coordinate.  The
resulting equations are:
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Now multiply Equation (26) by hx
* x( )  and the complex

conjugate of the time-dependent part of (27) by ey(x), then
integrate across the transverse dimension and write in matrix
form:

Bx = µHx − jκHz;  Bz =  jκHx + µHz

γ = − j
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Fig. 4  Waveguide cross-sectional geometries
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V. APPLICATIONS OF THE METHOD TO SIMPLE EXAMPLES

a.  Completely filled waveguide, Figure 4(a) assume

      ζ = − 2

a

κ
µ

x( )  
o

a

∫ sin
πx

a
cos

πx

a
dx (25)

If κ/µ (x) is an even function about a/2, ζ = 0.  For maximum
coupling, take κ/µ as negative for the left half of the guide,
and positive for the right half.  Then

ζ = 2

a

κ
µ

sin 
2πx

ao

a

2∫ dx = 2

π
κ
µ

(26)

The differential phase shift available from the completely
filled guide can be expressed as the difference between the
two roots of Equation (8), and will be

         
∆φ
φo

= ∆β
βo

= 2ζ ωc

ω
= 4

π
κ
µ

ωc

ω
(27)

b.  Thin vertical slab located at x=xo, of thickness t<<a,
Figure 4b.  Again, assume

     ey x( ) = hx x( ) = sin
πx

a
 ;  kc = π

a

For a thin slab, approximate κ/µ (x) as

     
κ
µ

x( ) ≈ κ
µ

 t  δ  x − xo( )

so that

    ζ ≈ − t
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κ
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2πxo
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It appears that the optimum locations for such a thin slab are

at xo = a

4
 and xo =  

3a

4
, regardless of frequency relative to cut-

off.  At these locations, differential phase shift will be

    
∆φ
φo

= ∆β
βo

≈ 2t

a

κ
µ

ωc

ω
(29)

for a single slab, and twice that amount for two slabs
oppositely magnetized at the two positions.  Again, a disper-
sive decrease of differential angle with frequency is indi-
cated.  It should be noted that this result is in agreement with
computations based on conventional perturbation theory.
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