
that contrasts sharply with the case of an ordinary lossless
waveguide below cutoff. In that case the propagation factor is
pure real, indicating that the incident and reflected fields have
constant phase and decay exponentially in the guide. The total
field may exhibit a phase difference across a lossless section
of ordinary cutoff waveguide because of the end conditions,
however.

This paper examines the solutions for propagation factor in
a lossless ferrite waveguide biased with a transverse magnetic
field and operated at a frequency below cutoff of the dominant
TE mode. The analysis is based on the approach of [2]. The
peculiar characteristics observed above turn out to be pre-
dicted (but strange) results of the analysis.

II.   ANALYTICAL MODEL

For time–harmonic electromagnetic fields in uniform cy-
lindrical waveguides, it is customary to separate the trans-
verse distribution of the fields from the variation along the
axis of the guide. Using the notation of Harrington[4], nor-
malized transverse field vector mode functions e(x,y) and
h(x,y) may be defined, with the normalization such that the
squared magnitudes of these functions integrate to unity over
the transverse plane. All amplitude factors are then expressed
in a z–dependent mode “voltage” V(z) and mode “current”
I(z), and the transverse fields E

t
 and H

t
 are given by

  E
t
 = e(x,y) V(z)  , H

t
 = h(x,y) I(z)             (1)

Determining the transverse field distribution then involves
the solution of a two–dimensional Helmholtz–equation bound-
ary value problem, while the longitudinal variations of the
scalar amplitudes V and I behave according to the elementary
transmission line equations. In cases where a detailed knowl-
edge of the transverse field distribution is not required, it is
sometimes possible to replace the actual waveguide field
problem by an equivalent transmission–line problem using
distributed lumped–element parameters. Proper implementa-
tion of this approach easily yields the propagation factor for
the waveguide.

As an example, consider the familiar transmission–line
representation for the dominant TE
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 mode in a uniform,

homogeneously filled ordinary rectangular waveguide, shown
in Figure 1. When the distributed series inductance and
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ABSTRACT

Unlike conventional waveguides, lossless ferrite–filled
guides may exhibit a complex propagation factor below cutoff
of the dominant TE mode when a transverse magnetic bias
field is applied. In that case, the field in a very long waveguide
has the character of a traveling wave whose amplitude decays
exponentially with distance from the driven end. The wave-
length and the magnitude of the applied bias field are in-
versely related, and at zero field as the gyromagnetic effects
vanish in the ferrite  the wavelength becomes infinite. For a
bias field of one polarity, the traveling wave will be a forward
wave, and for the opposite polarity a backward wave.

This peculiar behavior allows phase shift to be produced in
a band pass filter–like structure in which small cross–section,
below–cutoff ferrite waveguide sections alternate with sec-
tions of high dielectric constant material.

I.   INTRODUCTION

Some years ago, the author presented an analysis of differ-
ential phase for the dominant TE mode in completely filled
circular ferrite waveguide with transverse fourpole magnetic
bias[1]. In that paper it was noted that the amount of differen-
tial phase did not depend on the dielectric constant of the
ferrite material. What was not commented upon, but is obvi-
ous from inspection of the equations, is that the amount of
differential phase also does not depend upon whether the
frequency is above or below the dominant TE mode cutoff
frequency. This analysis was based on a simplified transmis-
sion–line model for the lossless nonreciprocal ferrite–loaded
waveguide, which was eventually also published[2].

More recently, the search for ways to reduce the size of
rotary–field ferrite phase shifters led to configurations in
which sections of ferrite waveguide alternate with sections of
nonmagnetic ceramic material of much higher dielectric
constant[3]. The cross–sectional dimensions of this filter–like
structure may then be reduced to a fraction of the diameter
needed to propagate in a uniform ferrite rod. In  carrying out
this development it was assumed, and verified experimentally,
that the differential phase calculated using [1] was valid, even
though the ferrite waveguide sections could be below cutoff at
the operating frequency.

Such behavior implies that waves of bias–field–adjustable
wavelength exist in the cutoff ferrite waveguide, a condition



the geometry and bias field configuration favors nonreciprocal
effects, as well as on the permeability tensor element values
produced in the ferrite by the transverse magnetic bias field, i. e.

            (5)

A rationale for the parallel connection of distributed inductor
and gyrator elements in the equivalent circuit has been pre-
sented previously[5]. Essentially, the µ factor of the induc-
tance L

1
 is implicitly dependent on the permeability tensor of

the magnetized ferrite. For a guide completely filled with
uniformly magnetized ferrite and no gyrator coupling, µ will
be replaced by µ

eff 
, given by

            (6)

 With parallel gyrator coupling, the determinant 1 - ζ2 of the
inverse of the L  matrix appears as a denominator multiplying
L

1
, so that for the case being considered, the net result is an

equivalent µ factor for L
1
 of the form,

            (7)

and for p varying from zero to unity the value for µ
equiv

transitions smoothly from µ
eff

 to the diagonal element µ  of the
permeability tensor. This is an important behavior for Faraday
rotators, although for the single–mode guide of interest here,
the net effect is a slight shift in the guide cutoff frequency.

The propagation factor for the extended transmission–line
model may now be determined by assuming solutions for the
voltage and current quantities that vary as exp(γ z) and finding
the roots of the characteristic equation:

            (8)

Defining the initial (ζ = 0) infinite–medium propagation

factor as    β0 = ω L1C , equation (8) can be written in the form

parallel shunt LC elements are defined as shown, the propa-
gation factor readily computes to

            (2)

where     β0 = ω µε  is the free space propagation factor in the

medium filling the waveguide, and   ωc = π
a

1
µε  is the cutoff

frequency of the mode. Note that the series and shunt induc-
tances can be combined into a diagonal matrix L  as follows:

            (3)

Here   kc = π
a  is the cutoff wave number for the rectangular

waveguide dominant mode.With the inductances combined
in this form, it is easy to generalize the transmission–line
model to guides with other relationships for k

c
, and to include

a distributed gyrator that couples the series and shunt mem-
bers. The extended model is shown in Figure 2. Nonreciprocal
coupling between the series and shunt inductances is the
network equivalent of similar coupling between the trans-
verse and longitudinal magnetic fields of the waveguide TE
mode. Following [2], the inductance matrix for the coupled
case becomes

            (4)

where the coupling factor ζ depends on the extent p to which

Fig. 1  Rectangular  waveguide and transmission–line equivalent
model for TE

10
 mode.

Fig. 2  Extended transmission–line equivalent model incorporating a
distributed gyrator.
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          (14)

As in a guide above cutoff, the characteristic impedance
expresses the  relationship between the normal–mode line
voltage and current. The imaginary value of characteristic
impedance for the below–cutoff case simply expresses the fact
that the normal–mode voltage and current have a specific
amplitude ratio but are in time quadrature. Because the direc-
tion of the current flow is opposite between the mode attenu-
ating in the positive–z direction and the mode attenuating in the
negative–z direction, the quadrature relationship will be re-
versed for one mode relative to the other. These conditions are
analogous to the propagating case, and permit the voltage–
current relationship to be satisfied for arbitrary end conditions
in a guide of finite length.

IV.   END CONDITIONS FOR A WAVEGUIDE BELOW CUTOFF

Consider now the case of Figure 3, in which a short length
d of cutoff ferrite waveguide is terminated in a resistive load R.
Solutions of the transmission line equations for this case give
the following for V(z) and I(z):

          (15)
Here β stands for the imaginary part of γ in equation (11). Note
that the power flow in the cutoff guide meets the necessary
criterion, i. e.

          (16)

Clearly, the expressions above involve both normal modes,
with fields decaying in positive and negative z, respectively.
For a better insight, it is useful to think of the positive–z
decaying mode as the incident field and the negative–z decay-
ing mode as the reflected field, much as the above–cutoff case
considers end conditions in terms of incident and reflected
traveling  waves.  Then the reflected and incident fields can be
related through a load–dependent reflection coefficient. The
diagrams of Figure 4 show the combination of incident and

            (9)
Evidently equation (9) reduces to the ordinary waveguide
case of equation (2) when the nonreciprocal coupling ζ
vanishes. The square–root term of equation (9) expresses the
ordinary bidirectional waveguide propagation, which has a
second–order symmetric modification of cutoff frequency
because of the nonreciprocal coupling. In most practical cases
of interest this shift should be small. The first term gives the
main effect of the nonreciprocal coupling, which is indepen-
dent of the direction of propagation. When the frequency is far
above cutoff, this term will add numerically to the propaga-
tion factor in one direction of propagation and subtract from
it in the other direction. Since the sign of ζ changes with the
direction of the magnetic bias field, the net propagation factor
will move up and down antireciprocally from the ordinary
waveguide value as the magnetic bias field is varied from its
maximum negative to maximum positive value.

The characteristic impedances associated with the propa-
gation factors turn out to be numerically equal, and are given
by[2]

          (10)

III.   CONDITIONS BELOW CUTOFF

Cutoff occurs when the term under the radical in equation
(9) vanishes. For frequencies below the cutoff value, equation
(9) is properly rewritten as

          (11)

and by defining

          (12)

the propagation factor takes on the form of an attenuated
wave. That is, for a waveguide driven at one end and extend-
ing to infinite z, the field quantities will vary along the guide
as

          (13)

with the two choices of sign of α z corresponding with the two
cases in which the field value for an infinitely long guide
vanishes at either positive or negative infinity. The
nonreciprocal coupling still produces a traveling wave, now
attenuated, that moves in a direction determined only by the
direction of the magnetic bias field. For one bias field direc-
tion the waves will travel away from the driven end, and for
the other bias field direction the waves will travel toward the
driven end. The characteristic impedances of the two roots
will both be purely imaginary, and again numerically equal:

   α ≡ β0 (ωc
ω )2

(1 – ζ2) – 1

   V(z) = V0 e±α z e jβ 0ζ (ωc
ω ) z

   γ = j β0 ζ (ωc
ω ) ± β0 (ωc

ω )2
(1 – ζ2) – 1

   γ = j β0 [ ζ (ωc
ω ) ± 1 – (ωc

ω )2
(1 – ζ2) ]

   Z0 =
L1

C [1 – (ωc
ω )2

(1 – ζ2)]

   jZ0 = j
L1

C [(ωc
ω )2

(1 – ζ2) – 1]

Fig. 3  Model for short ferrite waveguide below cutoff.
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reflected field phasors that will exist at the end of a long cutoff
section terminated in a real load whose resistance is equal to
the magnitude of the characteristic impedance of the cutoff
guide. For this case the phase of the voltage across the load
differs from the phase of the incident field by 45 degrees. For
other values of load resistance or for shorter sections of cutoff
guide, the phase will generally differ from 45 degrees but will
be in the range of zero to 90 degrees relative to the phase of the
incident field.

Note that the magnitudes of the incident and reflected fields
are equal at the termination, i. e. the reflection coefficient has
a magnitude of unity. This is a general condition that applies
whenever a cutoff guide terminates into a pure real load, as can
be seen by forming the squared magnitude of the reflection
coefficient:

(17)

Evidently a duality of sorts exists between the cutoff guide
and the propagating guide, since terminating a guide with real
Z

0
 into a pure reactance also yields unity magnitude of reflec-

tion coefficient. To achieve zero reflected field, a cutoff guide

may be terminated in a pure reactance equal to  the charac-
teristic impedance of the guide. Because it is possible to
terminate the cutoff guide in a reactance of the opposite sign
from the characteristic impedance, the reflected field may be
greater than the incident field. In fact, terminating a cutoff
guide in a lossless system into the complex conjugate reac-
tance of the characteristic impedance causes a singularity in
the reflection coefficient, i. e. the entire structure resonates
with infinite Q. Obviously the inherant losses in a practical
structure will limit the ratio between magnitudes of the
incident and reflected fields to a finite value.

The familiar Smith Chart presents a useful mapping rela-
tionship between the normalized load of a guide with real Z

0

and the resulting reflection coefficient. An analogous pre-
sentation can be made for the case of a terminated below–
cutoff guide, as shown in Figure 5. For a cutoff waveguide,
the right half of the impedance (or admittance) plane maps
into two half–Smith Charts, one based on |ρ| as  the distance
from X/Z

0
 = 1, the other based on 1/|ρ| as  the distance from

X/Z
0
 = -1. The unit half–circles of each chart represent the

same conditions of termination in positive real load imped-
ance.

Fig. 4  Incident and reflected field conditions for termination in a real
load of              ..

  ρ 2=
R – jZ0
R + jZ0

2
= 1

 R = Z0

Fig. 5  “Smith Chart” for reflections at the end of a cutoff guide.
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ω

   ∆φ = 4Nβ0d p κ
µ
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ω

V.   PERIODICALLY LOADED GUIDE

Next, consider a lossless filter–like structure that is com-
prised of short lengths 2d of cutoff ferrite waveguide alter-
nating with generally different short lengths of guide filled
with a material of much higher dielectric constant. If the
frequency and physical parameters are chosen such that the
composite structure is near the center of a pass band, and if
R is taken as the load at the end of a terminating ferrite guide
half–section of length d, then the impedance level at the
midpoint of each ferrite section of length 2d will also be
equal to R. Inspection of equations (15) for this case reveals
that the magnitudes of the voltage and current will be
symmetric in z with respect to the midpoint d for each ferrite
section. Then the ferrite guide sections will each appear to
propagate a bias–field dependant traveling wave whose
magnitude is minimum at the center and rises at the ends.
Conversely, the high–dielectric sections, which must be
above cutoff, propagate a normal wave whose amplitude is
maximum at the center of the sections and droops symmetri-
cally toward the ends. Figure 6 shows a plot of the field
magnitude levels for a typical case of periodically loaded
structure.

As indicated above, the wavelength in the ferrite sections
is inversely related to the magnetic bias field level, becom-
ing infinite for zero bias as the gyromagnetic effects in the
ferrite vanish. For one polarity of bias field the wave will
travel in the same direction as the energy flow, i. e. a forwardFig. 7  Unmetallized test structure showing alternating sections.

Fig. 6  Field amplitude vs. distance in a typical periodic structure.

wave, and for the other polarity of bias field the wave will
travel in the opposite direction, i. e. a backward wave.

Since the magnetic bias field may be changed between
positive and negative maximum values, the available phase
shift ∆φ from N cutoff ferrite waveguide sections of cumula-
tive length 2Nd will be, from equation (13),

          (18)

But 2N   β0d is the insertion phase for a plane wave propagating
through the distance 2Nd in an infinite ferrite medium, which
can be defined as φ

0
 and used as a normalization:

          (19)

Equation (19) is exactly the same as the result derived for
ferrite waveguides above cutoff and previously published in
reference [1]. In [2] a perturbational method was used to
calculate a value of p = 2/π for the case of a rectangular
waveguide fully filled with ferrite, operating in the dominant
TE mode, and with constant magnetic bias in the positive y–
direction over one half the cross–section and in the negative y–
direction over the other half. For a circular guide completely
filled with ferrite and biased by a transverse fourpole magnetic
field, a value of p = 0.615 has been recommended[1] on the
basis of experimental data.

VI.   EXPERIMENTAL RESULTS

A test configuration has been built using eleven alternating
sections of 800 Gauss garnet material of ε ≈ 15 and a nonmag-
netic ceramic material of ε ≈ 100 in a circular waveguide. The
cutoff frequency of the ferrimagnetic guide sections was
approximately 3.7 GHz., and the structure was optimized for
a pass band from 2.8 to 4.3 GHz., with the band from 3.0 to 3.5
chosen as the target range for impedance matching to a
conventional rectangular waveguide at each end. At 3.0 GHz.
the estimated maximum value for ζ is 0.28. Figure 7 shows a
photograph of the test structure prior to metallization, and
Figure 8 shows the computed return loss of the configuration
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over the optimized pass band. A close fitting ferrite yoke was
placed over the garnet–ceramic rod and the phase shift avail-
able for a linearly polarized wave in the structure was mea-
sured as a function of the transverse fourpole magnetic bias
field drive, producing the “hysteresis loop” shown in Figure 9.

VII. CONCLUSIONS

Phase shift is not only possible in below–cutoff ferrite
waveguides, but the phase shift per unit length actually in-
creases as the diameter of the guide is reduced. Alternating
short sections of cutoff ferrite guide with sections of  nonmag-
netic ceramic materials of high dielectric constant allows
small rotary–field phase shifters to be built retaining the
superior control and phase accuracy of that class of device. As
the size and weight of the units is decreased, the peak and
average power handling capability will decrease, and the
insertion loss will increase. However, the increase of insertion
loss is with reference to a very low base level because the
amount of ferrite required for a rotary–field phase shifter is
only enough to produce a differential phase of 180 degrees.
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