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Abstract  —  Some microwave ferrimagnetic materials, e. g. 
compositions of the yttrium-iron garnet family, are known to 
exhibit sensitivity to intrinsic or externally applied mechanical 
stress. This stress can cause the magnetic properties of the 
material to be inhomogeneous, resulting in undesirable insertion 
loss increases in devices such as Dual-Mode ferrite phase shifters 
that use variable longitudinal-field bias. Typically the insertion 
loss increases appear as “spikes” at low bias field magnitudes.    

This paper presents analyses based on a transmission-line 
model for the ideal and stress-distorted cases. A conclusion is 
that the existence of stress-induced inhomogeneities can break 
the degeneracy of normal modes in the zero-bias condition, 
causing the observed behavior. A method is suggested for 
screening ferrite rod samples to determine suitability for use in 
Dual-Mode phase shifters. 

Index Terms  —  Coupled mode analysis, ferrimagnetic 
materials, ferrites, mechanical factors, phase shifters, stress. 

I. INTRODUCTION 

Many years ago during initial development of Dual-Mode 
ferrite phase shifters [1]-[3], it was thought that it would be 
desirable to make the phase shifters using rods of gadolinium-
doped yttrium-iron garnet material. The objective was to get 
better temperature stability of phase shift characteristics and a 
higher operating peak power level than would be possible 
using spinel ferrites. So a few phase shifters were built with 
that type of material and put into housings, and the 
performance data were measured. It came as a surprise to find 
that the phase shifters performed well except for bias fields 
near zero flux density, where large “spikes” in the insertion 
loss were observed. Realizing that garnet material is more 
sensitive to mechanical stress than spinel ferrite, it was 
concluded that there was probably some sort of bending stress 
induced “built-in” transverse magnetic bias field, resulting 
from the sintering or machining process, or from mounting in 
the housing, that seemed to be influential only near zero bias 
field and that was suppressed at higher bias fields. Two 
lessons were learned from that experience, (i) avoid the use of 
garnet materials in Dual-Mode ferrite phase shifters, and (ii) 
try to provide a mounting arrangement that does not subject 
the ferrite rod to excessive mechanical stresses.  

Although the stress sensitivity of garnet materials has been 
reduced through the addition of dopants such as manganese, it 
remains possible to have troublesome stresses in a long ferrite 
rod and consequently those observations made years ago  
may sti l l affect the performance of Dual-Mode ferrite 
phase shifters. What has changed with experience is a better 
understanding of the way stress can influence the behavior of 

structures with longitudinal bias field, and especially the 
insertion loss increases near zero bias field levels. The 
analysis and discussions below seek to examine factors that 
can lead to the observed behavior, and to suggest a simple 
screening procedure that can identify ferrite rods that may be 
unsuitable for use in Dual-Mode ferrite phase shifters. For 
simplicity and without loss of generality, the analytical model 
used here is based on waveguides of square cross-section, 
although the conclusions may properly be extended to 
waveguides of circular cross-section.   

II. SQUARE WAVEGUIDE TRANSMISSION-LINE ANALYSIS 

Consider the familiar transmission-line representation for 
the dominant TE10 mode in a uniform, homogeneously  
fil led ordinary rectangular waveguide, shown in Fig. 
1. When the distributed series inductance and parallel shunt 
LC elements are defined as shown, the complex propagation 
factor γ readily computes to 
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Fig.1.  Transmission-line Equivalent Model for Rectangular 
Waveguide, TE10 Mode 
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frequency of  the mode. I f  the medium i s  a long itud in a lly   
magnetized ferrite in a waveguide constrained so that all 
modes above the dominant are well below cutoff, then the 
value for the series-element µ may be taken as  µeff, given by  
  µ = µeff =  µd

 [1 – ( κ / µd )
2 ].                        (2) 

 
The shunt-element µ may be taken as µz, where expressions 
for µz, µd, and κ are well known.    

However, if the a and b dimensions of the waveguide are 
both large enough to support first-order propagating modes, 
then there will be two sets of transmission-line distributed 
parameters, which may be taken as L101, L110, L201, L210, C01, 
and C10. Here the last two digits of the subscript indicate 
whether the element is associated with the TE10 mode or the 
TE01 mode. In the model of Fig. 1, the series inductance 
elements represent the contribution of the transverse 
microwave magnetic field, and if it is desired to include the 
effects of the longitudinal magnetization of the ferrite, some 
nonreciprocal coupling between the two series inductances 
must be added. This can be done by writing the two-
transmission-line system as a matrix equation, first expressing 
the series terms by the following: 
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and the shunt elements by: 
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In this notation 

! 

"
c10

= # / a µ
z
$  is the cutoff frequency of the 

TE10 mode, 

! 

"
c01

= # / b µ
z
$  is the cutoff frequency of the 

TE01 mode, and the parameter ζ represents the level of 
nonreciprocal coupling that is contributed by a distributed 
gyrator connected in parallel with the series inductances [4]. 
This coupling level is related to the ferrite permeability tensor 
values by 
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where 0 ≤ p ≤ 1  is a quantity that represents the extent to 
which the gyrator coupling approaches the coupling of an 
ideal Faraday rotator. Next, define 
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as the uncoupled (ζ = 0) propagation factor terms and form the 
product of the Z and Y matrices, 
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The solutions for the propagation constants β are given by the 
roots of the characteristic equation, 
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When the nonreciprocal coupling vanishes, i. e. ζ = 0, it is 
clear that the roots for β are equal to β10 and β01.  Finally, for 
the case of a perfectly square waveguide, a and b are equal 
and consequently 
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, so that (10) simplifies 

immediately to 
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The functional relationships of (11) are plotted in Fig. 2 
below, with the branches derived from taking the positive or 

Fig. 2. Propagation Characteristics for Ideal Square Waveguide. 
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negative sign of ζ so marked. It is important to keep in mind 
that the normal modes in this ideal square waveguide are 
right-hand and left-hand circular polarization. Note that when 
ζ = 0, the two branches cross, implying that for this value 
only, the two normal modes are degenerate and could be 
expressed as any orthogonal pair, including linearly polarized, 
if desired.  

III. STRESS-INDUCED LOSS OF DEGENERACY 

In a stress-sensitive ferromagnetic material, mechanical 
stress can distort the magnetic properties of the medium. A 
long, slender rod of such material can develop a small internal 
transverse dipole magnetic bias field as a result of bending 
stress normal to the axis of the rod. A bending stress of this 
type can be caused by mechanical forces applied externally 
when the rod is mounted in a misaligned housing. It can also 
result from mechanical distortion produced by uneven heating 
of the rod during the sintering process. A rod that is bent 
during the sintering process may be cleaned up to true 
mechanical dimensions by subsequent machining, but may 
nevertheless exhibit a non-homogeneous characteristic with 
respect to angular orientation of incident linearly polarized 
microwave excitation. In the absence of a longitudinal 
magnetic bias field (ζ = 0), there will now be two orthogonal 
linear normal modes with distinctly different propagation 
factors. In other words, the normal-mode degeneracy noted for 
the ideal case of Fig. 2 is gone and the uncoupled propagation 
factors β10 and β01 defined above are no longer equal.   

The impact on the propagation characteristics is significant, 
particularly in the vicinity of zero longitudinal magnetic bias 
field (ζ = 0). To illustrate the effect, take β10 = rβ0 and β01 = 
β0/r, substitute these values into (10) with r set to 1.05 and plot 
the results shown in Fig. 3. 

 
Fig. 3. Propagation Characteristics of Non-ideal Waveguide.  

The calculated propagation characteristics of Fig. 3 are 
somewhat startling at first sight, because there is a range of 
values of β between β10 and β01 that cannot be reached 
regardless of the value selected for ζ. Also, the two branches 
clearly associated with right-hand (RHCP) and left-hand 
(LHCP) circular polarization in Fig. 2 are disjoint in Fig. 3, 
i.e. there is no clear association of one branch with RHCP and 
the other with LHCP. This is more understandable by recalling 
that the required normal modes at ζ = 0 are linearly polarized; 
therefore the normal mode excitation for each branch 
progresses from one sense of circular polarization, through 
linear polarization, to the opposite sense of circular 
polarization as ζ moves from negative values, through zero, to 
positive values. Fig. 4 shows an expanded plot of the Fig. 3 
values for small magnitudes of ζ for the non-ideal case, with 
the ideal case values overlaid. It is clear that the non-ideal β 
values, and therefore the normal-mode polarizations, quickly 
converge to the ideal case values as ζ moves away from zero. 

 

 
 

Fig. 4. Comparison of Non-ideal and Ideal Cases. 
 
Splitting of the degeneracy at ζ = 0 can have a profound 

impact on the performance of a Dual-Mode phase shifter. As 
the normal-mode phase difference along the rod accumulates, 
there will be an action to depolarize the incident circular 
polarization at the input to the variable-field phase shifting 
section, which will cause an increase of insertion loss though 
the device. The case r = 1.05 plotted in Fig. 3 is nothing less 
than catastrophic; because there is about a ten percent 
difference between the propagation factors β10 and β01, there 
will be a normal-mode phase difference of about 36 degrees 
per nominal wavelength of the phase shifting section. A 
typical Dual-Mode phase shifter requires at least three or four 
wavelengths in the medium to  provide 360 degrees of  phase 
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shift. Consequently the incident circular polarization will 
actually be partially converted to opposite-sense circular 
polarization, with the net effect of increasing the insertion loss 
of the device by more that 3 dB. For reasonably good device 
performance, the maximum difference between β10 and β01 
should be no more than about one percent.  

IV. “BIMODAL RESONANCE” SCREENING 

Although a constraint of one percent difference between the 
maximum and minimum β values at zero magnetic bias field 
seems stringent, there is fortunately a very simple, accurate, 
and quick method for determining whether a candidate ferrite 
rod complies with this requirement. The method consists of 
placing a completely degaussed rod, after metallization, into a 
fixture which allows the rod to be rotated and which couples 
its ends lightly to standard waveguide ports. The arrangement 
is conceptually depicted in Fig. 5. 

 

 
Fig. 5. Rod Screening Test Fixture Concept. 
 

Basically, the rod is operated as a TE11n-mode transmission 
cavity for a circular cross-section sample, or a TE10n/TE01n-
mode cavity for a square cross-section sample. Because the 
rod length l is many wavelengths long, the frequency band of 
interest will show periodic resonances of signal coupled to the 
output waveguide, with the amplitude peaks occurring at 
successive integer values of the half-wavelength index n.  If 
the rod has principal axes with different propagation 
constants, there will be a frequency shift back and forth 
between two sets of periodic resonances as the rod is rotated 
through 360 degrees. This frequency shift Δf will be exactly 
the amount needed to cause βl = nπ for both normal-mode β 
values. The magnitude of Δf is related to the difference Δβ 
between the normal-mode propagation factors by: 
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where f0 and β0 are nominal values of frequency and 
propagation factor at a particular resonance, and fc is the 
cutoff frequency of the waveguide. The radical generally 
evaluates to 0.6 -0.7, and if the maximum tolerance for Δβ/β0 
is 0.01, then the largest acceptable value for Δf/f0 will be 
0.006-0.007. A criterion of 50 MHz. maximum frequency shift  

has long been applied by Microwave Applications Group for 
screening of Dual-Mode ferrite phase shifter rods operating in 
the 9.0-10.0 GHz. band, a value now seen to be consistent 
with the one percent limit on variation of β suggested above. 
Finally, Fig. 6 below shows traces of an X-band bimodal 
resonance characteristic. In this case the frequency shift 
appears to be 10 MHz. or less, indicating that the rod is a very 
good candidate for Dual-Mode ferrite phase shifter use. 

Fig.6 X-band Bimodal Resonance Characteristic Display.  

V. CONCLUSIONS 

A high degree of magnetic symmetry as well as mechanical 
symmetry is necessary to avoid insertion loss problems in 
ferrite devices using a long rod operating through longitudinal 
bias field levels at or near zero. Caution should be used in 
applying materials known to have stress sensitivity, to avoid 
“built-in” magnetic distortion. The screening method 
described above may be helpful in determining suitability for 
use in such devices. The constraints are less stringent for 
devices that always operate at substantial bias field levels, 
such as two-state Faraday Rotation ferrite switching elements.   
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