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In this paper, the lossless TE mode waveguide equiva-
lent-circuit model is extended to permit a description of non-
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reciprocal phase shift effects by incorporation of distributegthere w. = —_—
gyrators into the elemental line length prototype. The Ve
gyrators provide antireciprocal coupling between the series
and shunt inductive elements of the transmission line model.
Simple perturbational formulas are presented and used for
computing some elementary geometries.

is the cutoff frequency of the mode.
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I.  INTRODUCTION

Equivalent-circuittransmission line representations pro-
vide a simple means of describing the essential behavior of
the propagation factor and characteristic impedance of a
lossless guiding structure without demanding a detailed
knowledge of the electromagnetic field distribution [1].
Some years ago, the distributed gyrator was incorporated
into a coupled-transmission line ensemble and used to de- O
scribe nonreciprocal Faraday rotation effects [2]. A varia-
tion of this model was subsequently used to verify that the Rl c
reciprocal phase shift mechanism of the Reggia-Spencer
type ferrite phase shifter was one of suppressed Faraday O O
rotation, and to study the characteristics of such structures
(3, 4]. Fig. 1 Rectangular waveguide

The equivalent-circuit model developed here extends
previous work by representing a single-mode, lossless,
nonreciprocal transmission line. The feature that permits
this behavior is the introduction of a distributed gyrator intduPpose now that the series and shunt inductance elements
the elemental line length prototype such that series and siJ§tcoupled by means of a distributed gyrator. This can be
inductive members are coupled nonreciprocally. If trffone by writing an “incremental inductance matrix’ ais

“series inductance” and “shunt inductance” quantities ai@llows:
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respectively associated with the transverse and longitudinal L k., dz -j¢ O
magnetic fields, it is clear that this model has coupling dL = ——— E i7 1 B
properties analogous to the nonreciprocal waveguide. kc(l_Z ) 0 k.dzg
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II. ELeEMENTAL ProTOTYPEOF LINE LENGTH
Consider a uniformly filled ordinary rectangular
waveguide and its dominant TE mode equivalent transmis- This quantity d is an equivalent-circuit representation
sion line representation as defined in Figure 1. The charf@-the gyromagnetically coupled inductance values in an

teristic impedance will be increment dz of the line length. The gyromagnetic coupling
“‘ i b factor ¢ can vary in magnitude between zero arnd for a
Zy = NZIY = v a 1) ferrite medium. The basis for writing such a matrix relation-
with the propagation factgrgiven by ship has been discussed previously (2).

Referring to the gyrator-coupled equivalent circuit of
2 Figure 2, it is possible to write the following equations
y = NZY = jag Jue \JD“’H (2) relating line voltage and current:

| Do




of the roots foy vanishes, but this point no longer represents
(4) the boundary between propagating and nonpropagating fre-
guency regions. Cutoff begins for

W, = we \1-¢2 9)

and in the regiorw < w < @, the roots foly both have the
d = joCdzV + diy (5) same sign; i_.e., two _traveling waves can propagate in the
same direction at different phase velocities. The phase
velocities of these two waves become equal and finite at
cutoff. Below cutoff, the propagation factor becomes com-
plex, indicating that the solutions have the characteristic of
o attenuated waves. .
Consider the regionw > w, and defipe y. Then
the group velocity of the traveling waves can be found by
forming the derivative ofo with respect to 3, and from
equation (7) will be
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Fig. 2 Gyrator-coupled equivalent circuit ’ d8  dB/dw Ko

The second line of equation (4) can be solved fpirdierms

of V and I, and the result substituted into the top line &fis evident that the two traveling wave solutions have equal

equation (4) and into equation (5). After some manipulatiodld opposite group velocity regardless of the magnitude or

a version of the telegrapher’s equations is obtained: sign of their respective phase velocities. The specific depen-
dence of theao— characteristic is plotted as a family of

curves in Figure 3. The characteristic impedance values are

(10)

%E tked wih EVB the V/I ratios associated with each of the rootg, @ind are
S E = —j S . 2 E ES (6) essentially the eigenvector ratios of the matrix on the right-
| O e - 220 (1- ¢2)0 kg 00 hand side of equation (6).
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I1l. ProPAGATION FACTOR AND CHARACTERISTIC IMPEDANCE \‘C @r - @;2@ S (11)
Assuming solutions for V and | that vary 8&,eequa- B B
tions (6) take the standard form of a characteristic-value
problem, with solution for propagation factor as follows: LOCI OF CUTOFF VALUES, Ao ¢=0
DEFINED BY 22+ (%)2 -1 ASYMPTOTE
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Fig. 3 Specific dependence of w-¢haracteristics

For the(=0, this expression obviously reduces to the
form of equation (2) and describes the behavior of an ordi-
nary waveguide. Whebis nonzero, however, in the fre-
quency region wher@>wc, the roots foy splitinto positive V. CouPLING FACTOR CoMPUTATION
and negative values that are unequal, corresponding to a The transmission line model described above character-
guide that propagates a traveling wave in each direction, Fs the ferrite gyromagnetic effects by means of a single
at distinctly different phase velocities. &t=«, only one coupling factor{. In this section, a perturbational formula is



derived for computation dffor a very simple field distribu-

tion, using an approach similar to that presented by Hord, et ©vo Oak . . ai? - 2, dx O EVE
al [4]. gzg oy U
First, assume that the field distribution in the waveguide 5 5 5[ [oemax 5 0o

is principally TE, and represent the field componegtsz B 5771 D.g. m% s Hoo
and H; as follows: 85 wé"’séey 2B Igfh e 055
dl oo

Bz J feha Lenex  Heg

bEy = V(2) g (x); aHx = I(z) hx (x); bHz = Is(2) hz (x)
(12)
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Here & (x), hx (x), and i (x) are transverse-planeHere the prime denotes differentiation with respect to x.
distribution functions, and V (z) and | (z) are complegince §(x) must vanish at x=0 and x=a, integration by parts
functions that vary in the direction of propagation and ashows that the diagonal elements of Equation (19) are iden-
associated in a general way with the “transmission lingtally equal in conformity with Equation (6).
voltage and current, whilg [(z) is a complex function that
can be associated with the “shunt inductive current”. UsiAgsuming & solutions for V(z) and I(z), Equation (19)
the permeability tensor for a transversely magnetized ferriegcomes a characteristic-value problem analogous to Equa-

it follows that tion (6), with roots fol given by:
B, =uH, —jkH,; B, = jkH, +uH 13 g o #m o
x = HAx = KMz, B, = JKHy +UA; (13) % <o dxw\‘ Dﬁiu‘hx‘zdx%g i%%ﬁv‘”ég (20)
wherek andp are, in general, functions of position. y=-il P : ’ d
J'Oeyhxdx

Now, write the time-harmonic Maxwell curl equations,
substitute for B using equation (13), and write E and H &s a pertubational formula, the differential propagation
terms of V(z)g(x), etc., using equation (12). The resultingactor will be given by
system of equations is obtained:

I eyh dx

1dv . . AB=2—E (21)
LV e 9= o [-m@h, 00 + i@, 0] (14) [Ce o

For small deviations from the uniformly filled case, trans-
1di(2) dh, (x) verse resonance may be applied to conclude the following
——e, (x) = jwV(2)e,(x) +14(2)—2 15 relationship:
~S e, () = 0 V(2e, () + 1@ (5) p

1 _dOde (o O

1 & & 0 BepyW 22)
SV —Jw[JKI () +uls(@2)h,(x)]  (16)

Equation (16) and its derivative with respect to x may be use@mparison with Equation (12) then permits the following
to eliminate §z)dhz(x)/dx in Equations (14) and (15), re-identifications to be made:
spectively. Intaking the derivative, it should be notedkhat

andp may be functions of the transverse coordinate. The 2_ 2 5
resulting equations are: . =bI°BTahX dx | _ a_[ s‘ey‘ & (23)
a e h-dx ’ eyhdx
B%%(X) _ jgv deé,ix) —nguz;’(zghx(x) a7 foevhx .[
Since k is well defined for this case, the coupling factor is
1d, 1 d0l dey(x)DZI _dk O given by
adz™ ) ﬂy 2o o Y B ™™g (18) aK (X)6, (X (x)clx
* oo 2 Jop S (24)

Now multiply Equation (26) byh, (X) and the complex k J’:ey(x)h;(x)dx

conjugate of the time-dependent part of (27) yx} then
integrate across the transverse dimension and write in matrix
form:



V. ApPLICATIONS OF THE METHOD TO SIMPLE EXAMPLES

a. Completely filled waveguide, Figure 4(a) assume Hoc Hoc

. T m
=h =sn —; ke =— sothat
ey(x)=hz()=sn 2 ke =T

° h dx = asinz X x:E and therefore
Ioey X .[o QX@ 2

(= -2 aﬁ(x) sin® cos™ dx (25)
alopy a a
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If K/ (X) is an even function about a/2, { =0. For maximum
coupling, take</p as negative for the left half of the guide,
and positive for the right half. Then

a

d & >

a. COMPLETELY FILLED WAVEGUIDE

Z:gﬁ Esin 4d2nX X:EE (26)
apudo a U
The differential phase shift available from the completely Hpc

filled guide can be expressed as the difference between the
two roots of Equation (8), and will be

% Bo W U ®
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b. Thin vertical slab located at xg)0f thickness t<<a,
Figure 4b. Again, assume —p la—t

. TIX T ¢ a >

X) = hy (X)=sin— ; k.= —

& () =h()=sn k= 1
b. WAVEGUIDE WITH THIN VERTICAL SLAB

For a thin slab, approximakgu (x) as

%(x) 25 t & (x—x) Fig. 4 Waveguide cross-sectional geometries
so that
t K [P, O
=-——gin 28
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